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A variety of rigorous inequalities for critical exponents is proved. Most notable 
is the low-temperature Josephson inequality dp' >1 y' + 2fl >1 2 - a'. Others are 
l < ' / ' < l + v ~ , ,  1 < ~ <  l+8#q,,  8>~1, d/~,~> l + l / d  (for ~>~d) ,  dp~ 
/> A; +/3 (for ~ ;~ d), A 4/> 7, and m2m ~ m2m+2 (for m /> 2). The hypotheses 
vary; all inequalities are true for the spin-1/2 Ising model with nearest-neighbor 
ferromagnetic pair interactions. 

KEY WORDS: Critical exponents; critical-exponent inequalities; correlation 
inequalities; Josephson inequality. 

1. INTRODUCTION 

Almost two decades ago, Rushbrooke (1) initiated what has by now become 
a minor industry: the rigorous demonstration of inequalities relating the 
critical exponents associated with systems undergoing a phase transition. 
Since Rushbrooke's seminal work, numerous such inequalities have been 
proven; 2 so there is probably little harm in adding a few more to the list. At 
any rate, that is what I will do in this paper. 

At least one of the inequalities proven here is of genuine physical 
significance: I give the first rigorous proof (to my knowledge) of the 
low-temperature Josephson (5) inequality dr' i> 2 - ct'. (Actually, I prove 
the slightly stronger result dr' >/7' + 2ft.) For the rest, I consider most of 
the inequalities proven here to be more amusing than useful. This statement 
merits a brief explanation. 

I consider the methods of proof to be rather amusing, for three 
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reasons: 
(1) While the use of correlation inequalities in proving critical- 

exponent inequalities has a long and honorable history (for a beautiful 
early example, see Fisher(4)), I here carry this tradition to its logical 
extreme, by using correlation inequalities in ways they were surely not 
meant to be used. My method of proof can only be described as "squeezing 
everything in sight out of every correlation inequality in sight," without 
regard to physical interpretation. As a result, I get what I deserve: some of 
my inequalities merit little more comment than the casual remark that they 
are true. 

(2) The proofs typically begin by considering a quanitity which is 
apparently unrelated to the inequality at hand, for example, by considering 
the temperature derivative of the magnetization while attempting to prove 
an inequality involving only the susceptibility. What invariably happens is 
that the "wrong" quantities cancel out at the final step, leaving only the 
"right" quantities. 

(3) Many existing proofs of critical-exponent inequalities work only for 
the high-temperature exponents, not for the low-temperature or critical- 
isotherm ones: these proofs fail in the presence of ,nonzero magnetization. 
An example is Fisher's proof (4) of the inequality y < (2 - ~)v,; while the 
corresponding low-temperature inequality 3" < (2 - ~)v~ is also expected to 
be true, it has not yet been proven. By contrast, most of the proofs given 
here work only in the presence of nonzero magnetization: in zero magne- 
tization, they reduce to such profundities as 0 >/0. 

Critical-exponent inequalities can be divided usefully into five classes: 
(1) Those that become equality under a thermodynamic homogeneity 

(scaling) hypothesis, e.g., Rushbrooke's a '  + 2fl + y' >/2; 
(2) Those that become equality under a length scaling hypothesis, e.g., 

Fisher's 3' < (2 - ~/)v,; 
(3) Those that become equality under the hyperscaling hypothesis, 3 

e.g., the Buckingham-Gunton (4'8'9) inequality 2 - ~ < d(8 - 1)/(8 + 1); 
(4) Those that become equality when the exponents take their class- 

ical (mean-field) values, e.g., .the inequality 7 > 1 due to Glimm and 
jaffe;(~o,~ 1),4 and 

(5) Those that become equality under no reasonable condition. 
Previously proved inequalities have usually been of the first four types 

(but see, e.g., Ref. 14 for an exception). It is a consequence of the present 

3 For the distinctions between the three successively stronger scaling hypotheses, see Hankey 
and Stanley (6) and Fisher. (7) 

4It is worth remarking that the inequality a ~< max[0, (2 - d/2)-r], due to the present au- 
thor, (~2) becomes equality for the Gaussian model, a slight generalization of mean-field 
theory.(13) 
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paper's perverse use of correlation inequalities that several of the inequali- 
ties proven here are of type (5)--well, so be it. 

The main results of this paper are summarized in Table I. Different 
inequalities require different assumptions; however, all inequalities are true 
for the sp in- l /2  Ising model with nearest-neighbor ferromagnetic pair 
interactions (in dimension d/> 2). Most are also true for the rp 4 lattice field 
theory. (15'16) The most interesting inequalities, to my mind, are those which 
become equality under hyperscaling. The hyperscaling conjecture, (7) whose 
validity is unknown even for the three-dimensional Ising model, (lv-20 is 
closely related to the nontriviality of the continuum limit in quantum field 
theory. ( ~ 8,22) 

2. NOTATION AND PRELIMINARIES 

In this paper, we shall consider a lattice system of classical one- 
component (real-valued) spins q)i, where i ranges over the points of a 
d-dimensional lattice ~ (usually ~ = 7#). Such a model can be specified by 
an interaction {qSx}xc e and a family of a priori single-spin measures 
(vi}i~ e . Here X ranges over the nonempty finite subsets of ~, and the q5 x 
are functions of the spins {cpi},.~x. Each Pi is a probability measure on the 
real line. Formally the Hamiltonian is ~,x~bx; of course, this actually makes 
sense only in finite volume. 

To make this precise, let b ~ N e be a spin configuration. For reason- 
able {d~x}, {vi}, and b, one can define the Gibbs measure in (finite) volume 
A with boundary condition b: 

= ( - Ox( ) I I  
X N A ~ O  i i ~ \ A  

(2.1) 

Here the partition function ZA,b ~ is defined so as to make/~,b a probability 
measure. We write ( �9 �9 �9 )].b for the expectation with respect to /~,b, and 
omit the labels ~, A, a n d / o r  b if they are clear from the context. 

More particularly, we shall consider the following special case: Let 
A -- (Ai}ic e be a family of nonnegative integers, only a finite number of 
which are nonzero; and define q~A = [i~ceqO/A,, suppA = (i E ~ :A~ v ~ 0}, 
and [A I = ~ic~Ai .  Then let 

qbx(q0 ) = - ~ JAq0 A (2.2) 
A : s u p p  A ~ X 

This is a model with polynomial interaction. To ensure the finiteness of the 
measure (2.1), we shall assume that fexp(a[q)[D)dvi(qo) < m for all a and i, 
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where D = m a x  A :jA~0[A] is the maximal  degree of interaction. 5 If the 
interaction coefficients JA are all nonnegat ive and the single-spin measures 
are all even, then the model  is called ferromagnetic. 

For  reasonable {qbx), {p i), and b, it is possible to show that the 
measures/zA, b converge (in a suitable topology) as the volume A increases 
to encompass all of ~.6 This limiting measure is called an infinite-volume 
Gibbs state for  the given interaction; it need not  be unique, since it can 
depend on the boundary  condit ion b. We shall restrict ourselves to trans- 
lation-invariant interactions (JA = JA +i for all i E ~ = 2~ a) and to boundary  
conditions which yield a translation-invariant,  ergodic ("pure phase")  in- 
finite-volume limit, 

Ferromagnet ic  models obey a number  of well-known correlation in- 
equalities. These are first proven in finite volume (with suitable boundary  
conditions); they then carry over immediately to the infinite-volume limit. 
The  following correlation inequalities will be used in the present work: 

(1) Gr i f f i th s -Ke l ly -Sherman  (GKS)  inequalities I and I1(28'29): As- 
sume that the model  is ferromagnetic  and b i/> 0 for  all i. Then  

(I) (q~A) > 0 for a l iA 

and 

(II) (q~A; q~8) = (q~Aq0 B) - (q~A)(q98) ~> 0 for all A,B.  

(2) Ginibre inequality(28'3~ Assume that the model  is ferromagnetic  
and b i ~ 0 for  all i. Let { q0i} and (e p/'} be independent  identical copies of 
the given model,  and define q,. = 2-1/2(q0g - cp~), t~ = 2-1/2(q~ i + q~'), qA = 
I-[iE~q A' and t B = ~Ii~s B'. Then  (qAtB)  >>, 0 for  all A , B .  

(3) New Lebowitz inequality(31'32~ : Assume that the model  is ferromag- 
netic and b~/> 0 for all i. Then  

(This obviously strengthens G K S  II.) This (together with its permutat ions)  
can also be written in the form 

(epA; q0B; q0 c ) / >  - 2  min[(q0A)(q0 ~; q0 c) ,  (q0 B)(q0A; epC), (q~C)(~n;  qg~)] 

where 

- % - - C )  

- + 

5This condition is slightly more stringent than is really necessary. 
6More precisely, it can be shown for very general interactions and boundary conditions that a 

q~ (23 25) subsequence/z A b converges. - For ferromagnetic models and boundary condition b = 0, 
the full net/~A ~ b~ by an argument using the GKS inequalities. C26'27) For a somewhat 
different class of models, with "+"  or " - "  boundary conditions, the full net/t~, b converges, 
by an argument using the F K G  (23'25) o r  G K S  (26) inequalities. 
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(b) 

Then 

(4) (Old) Lebowitz inequality(28'33-35) : A s s u m e  that the model is ferro- 
magnetic, with J~ = 0 for [A[ > 2, and b i >1 0 for all i. Assume further that 
each single-spin measure v i is one of the following7: 

(a) dvi(cp) = exp[ -  V(cp)]d% where V is even and differentiable, with 
V' convex on (0, oo); 
o r  

l 
1 ~ 6(r - l + 2j) drp (spin-l/2 model) dvi(~)- 1 + 1 j=0 

(q,4qB) >1 (qA)(qS) 
(tAt B) >~ (tA)(t B) 
(qAtB) <<. (qn)(tB) 

It is the last of these inequalities which is the most useful; among its 
consequences are 

(4a) Griffi ths-Hurst-Sherman (GHS) inequality(28'34'35) : 

+ --< o 

(4b) Lebowitz inequality for the four-point function(28'33"34) : 

In Section 3, we shall also use an inequality for the two-point function due 
to Schrader, (38) Messager and Miracle-Sole, (39~ and Hegerfeldt. (4~ In Sec- 
tion 6, we shall use some inequalities derived by Newman (41) from the 
Lee-Yang theorem, as well as a rather strange inequality due to GHS. (42) 
In the Appendix we shall use the FKG (29'43'44) and Gaussian (45-4s) inequali- 
ties. 

Most commonly, we shall consider a model with ferromagnetic pair 
interactions and a possible magnetic field: 

[ . !  if[A[ = 2  and Ai=Aj= 1) 
JA -- if IA[-- 1 (2.3) 

otherwise 

Here H >/0 and Jo = Jji >1 0; moreover, Jy depends only on i - j ,  and 
f = ~jJ , j  < o0. We shall generally fix the geometric structure of the pair 

7Actually, somewhat more general u~ are allowed, by virtue of the "analog system" method of 
Griffiths.(36,37) 
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interaction and vary only its strength, i.e., 

Jo = JaiJ (2.4) 

with fixed coefficients a 9 = o9i > 0, and 8 = ~ja~j < m. The quantity 
T= 1/J can be considered as a "temperature." A typical example is the 
nearest-neighbor interaction, in which ay = 1 if [ i - j [  = 1, a 0 = 0 other- 
wise. 

We now define the magnetization (per lattice site) 

M = (~;)  (2.5) 

and the internal energy (per lattice site) 

1 ~_,jo.(q~,~pj) (2.6) U=~ 
J 

These are independent of i, by translation invariance. Next we define the 
susceptibility (per lattice site) 

X = ~] (~v,; cpj) (2.7) 
j 

and the specific heat (per lattice site) 

1 
CH = -4 E JijJkl(ri~j; ~kqgl) (2.8) 

j,k,l 
It is formally true that X = 3M/OH and CH = JOU/OJ; but the rigorous 
proof of these "fluctuation-dissipation relations" (or "sum rules") requires 
a nontrivial interchange of differentiation with the infinite-volume limit. 
The required proof is carried out in the Appendix. 

Next we define, for each q~ > 0, the correlation length of order ~, 

~o = (x- l  ~ ljl~(rpo; CPj)) 1/~" (2.9) 
s 

and the exponential ("true") correlation length 

= lim sup ( - IJl/log(w0; %)) (2. lo) 

By H61der's inequality, ~,~ increases with q,. For models obeying reflection 
positivity, (48~ it can be shown (49) that 

/> const( ,, (2.11) 

for all q~ > 0. 
Finally, we define the higher-order cumulants 

Un = E ( f P i ] ' ~ g i 2  ; ' ' "  "~cPin) (2.12) 
i 2, �9 . . , in 

with the usual definition of the truncated (connected) correlation [indicated 
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by semicolons in (2.12)]. Formally ~t, = O"-1M/OH ~- l; the rigorous proof 
requires a fluctuation-dissipation theorem. Note that the GHS inequality 
implies that ~3 < 0. 

We now make the usual assumption that there exists a "normal critical 
point ''~4) at J = J~, H = 0. We shall not spell out in detail here precisely 
what is being assumed; this will be clear from each proof. For J > Jc, we 
take + boundary conditions (b.c.) in order to induce a spontaneous 
magnetization. 

To define the critical exponents, we write as usual (2-4) f ( x ) ~ x  x to 
mean that 

lim log f ( x ) / l o g x  exists and equals 
x,;0 

We then assume that 

J < L ( r >  L )  

H = 0  

J > J ~ ( T < T c )  

H = O  
( + b . c . )  

X ~ ( L  - J ) - ~  

c , ,~ ( J c  - J ) -  ~ 

~ ( J c  - J ) - ~  (2.13) 

~ + - ( L  - J ) -~~ 

x ~ ( j -  L )  -+ 

C H ~ ( J  - J~ ) -  ~, 

OM --'(J - L )e-~ 

[hence M ~ ( J -  J~ )/~] (2.14) 

~ ( j  - j~ ) -  ~, 

~+~(J  - L ) -  ~a 

~ . - ( J  - Jc ) - ~- ~ : ' ~  

J =  J~ ( T =  T~) 

H > 0  

x~H(1/6)  -1 

(hence M ~ H  1/~ ) 

C H ~ H  -o~/~ 

OU 

~ H  -~ 
~+~ H - ~+ 

(2.15) 
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3. INEQUALITIES OBTAINED BY BOUNDING ~j,kaj~(~;~%) 
By the GKS II and GHS inequalities, we have 

j,k 

< E Oljk[(~gjS(ri; ~gk) + (fPk)(~gi; ~j)] j,k 
= 2~M X 

Now by the fluctuation-dissipation relation (see Appendix), 

O M _  1 
OJ 2 ~_,~,_ ajk(epi; rj'~k) 

Hence we have 

(3.1) 

(3.2) 

O <<. M-1 3M < ~X (3.3) 
0J  

provided that M =~ 0. It follows immediately from (3.3) and (2.14) that 

7'/> 1 (3.4) 

(assuming, of course, that fl < oo). For a slightly more general deduction, 
which does not require /3 < ~ ,  fix J '  > J_c and integrate (3.3) from J = 
Jc + E to J = J '  (all at H -- 0): 

l o g M ( J ' )  - logM(J c + c) < ~ f .l" X(J)dJ (3.5) 0 -<< 
Jc+e  

Since M(J') > 0 while M(Jc + e)~O as c$0, it follows that the right side of 
(3.5) diverges as e$0. In terms of critical exponents we conclude (3.4). [If 
3" = 1, then (3.5) also implies that fl < ~ C ,  where C_ = limsN c ( J  - Jc) 
x(J).] 

The analogous inequality 3'/> 1 for the region J < Jc has been proven 
by Glimm and Jaffe(l~ 1) by a similar argument, studying 3X/OJ and using 
the Lebowitz inequality in place of OM/3J and the GHS inequality. 8 

The basic inequality (3.1) can also be applied on the critical isotherm 
J = Jc. Indeed, the fluctuation-dissipation relation entails 

1 3 U _  1 j~ k 
J OH 2 . aj~(~,; ~ j%)  (3.6) 

so from (3.1) and (2.15) we conclude immediately that 

>1 1 (3.7) 

8The Glimm-Jaffe  result is slightly stronger than ours: they prove that X/> const x (Jc - 
J ) -  ~, while we prove only that X(J) is nonintegrable as J~Jc. 
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This bound, like (3.4), becomes an equality when the exponents take on 
their classical (mean-field) values. 

Obtaining upper bounds on 7' and ~ is a somewhat lengthier affair. We 
first apply a special case of the new Lebowitz inequality: 

(r r KcPj)(qo,; r - (qok)(cP,; ~j)[ (3.8) 

[This inequality also follows from the Ginibre inequality (qiqjt~) >>. 0 and 
permutations. It improves the GKS II inequality used in (3.1), since GKS II 
says merely that the left side of (3.8) is nonnegative.] Setting i = 0 and 
G(I) = (r r we conclude that 

~,Oljk(~90;~PjfPk ~ > M~ajkCjk IG( j ) -  G(k)]  (3.9) 
j,k j,k 

for any choice of ( cjk - +-- 1 }. To estimate (3.9) effectively, we must make a 
guess, for each pair j ,  k, as to the likely sign of G(j) - G(k). A reasonable 
guess is that the correlations decrease with (Euclidean) distance, i.e., that 
G ( j ) -  G(k) has the same sign as Ikl- Ijl. This guess may not be exact 
(after all, the lattice theory is not Euclidean invariant9), but it is good 
enough for our purposes, l~ 

For geometric simplicity, we restrict ourselves to a nearest-neighbor 
interaction, so that only terms with [ j -  k I -- 1 occur in the sum. (This 
restriction will also be used in a more fundamental way later in the proof.) 
Taking 

% - sgn(Ik[-  Ijl) (3.10) 

we find that the sum in (3.9) telescopes (draw a picturet); since G(I)~ 0 as 
I / l~  oo, all that remains is a sum over the hyperplanes ja = 0, 1 ~< a < d: 

d 

~ a j ~ j k [ G ( j ) - G ( k ) ] = 4  ~ ~ aeooG(j ) (3.11) 
j,k a =  1 j : ja=0 

= 2~ ~, G(j)  (3.12) 
j:j~ =0 

in the isotropic case. We wish to convert this sum over a hyperptane into a 
sum over the entire lattice. 

Note firs6 4) that since G(j) >1 O, 

G(j) ( , - -  X (3.13) 
IJl > R ]Jl > R \ 

9Although it is likely to become so in the limit of the critical point. ~5~ 
l~ the case of a nearest-neighbor interaction, so that only IJ - kl = 1 occurs in the sum, the 

guess is exact, according to a theorem of Schrader, O8) Messager and Miracle-Sole, ~39) and 
Hegerfeldt. ~4~ 
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Hence 

G ( j )  > 1 -  X (3.14) 
IJl < R 

Next, an inequality due to Schrader, (38) Messager and Miracle-Sole, (39) and 
Hegerfeldt (4~ tells us that 

G(0,j2 . . . . .  Ja) >1 G ( j . ,  J2, . . . , ja) (3.15) 

(Here we really use the assumption of a nearest-neighbor interaction.) 
Hence 

G( j )  > 1 ~,  G( j )  >1 1 ~ G( j )  
j] =0 2R + 1 2R + 1 Ijll < 8 [Jl < R 

1 1 - X ( 3 . 1 6 )  
~ > 2 R + l  

Taking R = 24,, we conclude from (3.16), (3.11), and (3.9) that 

E ajk(qgO; qgjqgk) > const(q~)~TMx/(1 + f~,) (3.17) 
j,k 

for any q> > 0. This, together with (3.2), (3.6), (2.14), and (2.15) immediately 
yields the critical-exponent inequalities 11 

r 3" < 1 + v~ (3.18) 

and 

~" < 1 + 3/~ (3.19) 

The foregoing argument can undoubtedly be generalized to handle a 
variety of non-nearest-neighbor interactions. For example, if the interaction 
satisfies reflection positivity, then (3.15) is valid at least when summed over 
j2 . . . . .  Ja; this is all we really use in (3.16)! 

It is worth noting that the inequalities (3.18) and (3.19) are rather poor 
[as is to be expected from the rather unphysical use of the inequalities (3.8) 
and (3.9)]. For example, in the d = 2 Ising model, Y' = 7 /4  while v~ = 1; 
and in the d - 3  Ising model, 3 "=  1.25___ 0.01 while v~, 0.638 • 
0.008. (17'18'52-54)12 Moreover, in mean-field theory (believed to be accurate 
for d > 4), 3" = 1 while v~- '  - 1/2. 

11This assumes, of course that v~/> 0 and  p,, >/0. Those readers unwilling to take such 
plausible assumptions on faith can consult Sections 4 and 5 for proofs, 

12Actually, I have cheated a little here: the quoted values are inferred from the presumed 
scaling relations "y' = 7 and v~ = v 2 together with high-temperature series computat ions of 7 
and v 2. 
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4. INEQUALITIES OBTAINED BY BOUNDING ~j,k(q~i; q>j; ~k) 

It follows immediately from the GHS inequality that 

~-~(cp,;q)j; q~k) < 0 (4.1) 
j,k 

Now the fluctuation-dissipation relation tells us that this quantity equals 
a x / a H ( - -  a2M/aH2); thus X increases as H,I,0 at fixed J (in particular, at 
J = Jc). Hence, by (2.15), 

8 > 1 (4.2) 

To get a further bound, we rewrite the new Lebowitz (or Ginibre) 
inequality (3.8) in the form 

(~)i;~j;~k) >/ --2min[@pj)@Pi;ePk),(ePk)@Pi;q)j)] (4.3) 

We set i = 0, and again make the crude guess that correlations decrease 
with (Euclidean) distance. That is, we deduce from (4.3) that 

- '~-~,(%;r < 4 M ' ~  ~ (r (4.4) 
j,k j k 

Ikl < lJl 
Since the number of lattice points k with Ikl < IJl is bounded by c~ + c21jl d, 
we conclude that 

- •  (%;q0j ;%) < 4M(c,x + c2(ffX ) (4.5) 
j,k 

o r  

i aX - X -  ~ < M(c3 + Ca~ d) (4.6) 

provided that X v e 0. Now fix J = Jc and H '  > 0, and integrate (4.6) from 
H = e t o H = H ' :  

logx(H')  <~fcH'M(H)[c3 + c4~a(H)a]dH (4.7) l o g x ( e ) -  

Since x(H') < oo while X(e)J'oo as e$0 (provided that 8 > 1), it follows that 
the right side of (4.7) diverges as e$0. In terms of critical exponents, we 
conclude that 

died >/ 1 + I / 8  (4.8) 

Since ~ (and hence/z~) increases with ~, it follows that 

d/zr >/ 1 + 1/8 for q~ > d (4.9) 

If, in addition, reflection positivity holds, so that/z >//% for all % we then 
have also 

dr > 1 + 1/8 (4.10) 
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Inequality (4.9) is actually not new: it has been proven by Liu and 
Stanley (55> for all ~ >10. ~3 But their proof uses the GHS inequality, while 
the foregoing proof uses only the more widely applicable new Lebowitz (or 
Ginibre) inequality. 

Inequality (4.5) can also be applied at J > Jc, H = 0; the immediate 
conclusion is that 14 

A' 3 < dr', - 18 for q~/> d (4.11) 

Indeed, (4.5) is an absolute upper bound on the "dimensionless renormal- 
ized three-point coupling constant" 

g(3) = _ u3 / M X  ~ (4.12) 

This bound is analogous to the bounds of Glimm-Jaffe ~56) and others (22'57) 
for the four-point coupling constant. 

The critical-exponent inequalities (4.8)-(4.11) become equalities if hy- 
perscaling holds. 

5. INEQUALITIES OBTAINED BY BOUNDING ~zk,ta,(q0i;~j;%%) 
Let us consider the quantity 

OX _ 1 ~.i OLkl(fPi; 0i9j; Ot~kfPl) (5.1) 
3J 2 j,k,l 

By the new Lebowitz inequality, 

(q0i;~;q0~cgt)/> -2min[(rgi)(~pj;~k~pl),(cpj)(~i;~p~cpz)] (5.2) 

Now, by translation invariance, we can choose to fix k instead of i in (5.1), 
and sum over the rest; we do so, setting k = 0. We choose the first term in 
the brackets of (5.2) if Ijl/> Iil, and the second term otherwise. Then 

0X 
- 0---J < 2M~'] ~,  a0t(q0j; q00q0,) (5.3) 

j , l  i 
]il < IJl 

< 2M~a0z(c~ + c2lJla)(~.; ~o~) (5.4) 
j , l  

= 4clM-~-j  + 2c2M~ao, ljla('~j;'~o'~) (5.5) 
j , l  

Now by the GKS II and GHS inequalities, 

0 < (~pj; q~o~pt) < M ( ( r j ;  ego ) + (%.; cp,)) (5.6) 

laThey actually claim it to be true for all real q,, but I am unable to make any sense of ff < 0. 
14This assumes, of course that u~/> 0 for ~/> d. Those readers unwilling to take such a 

plausible assumption on faith can consult Section 5 for a proof. 



38 Sokal 

Hence 

<r <~ <r + <qgj; fp/>) x (5.7) 
for 0 < k < 1. Using (5.7) and H61der's inequality [with p = 1/(1 - k) and 
q = I/k], we obtain 

[ ~j, laozlJla<~; rPorPt> < Mx 2 aot(~j; q~o~,> 
j,l 

• ~, ao, lJlWa((%; ~o> + (r r (5.8) 
j,l 

" ~  X [05 4" t26~ d] (5.10) 

for ~ >t d/h,  where we have used Ijl d/x < const(I j - I[ '~/x + Ill a/~) in going 
from (5.8) to (5.9), and have assumed that ~zl/IWXa0t < ~ in going from 
(5.9) to (5.10). Inserting (5.10) into (5.5), we conclude that 

OX 8M csMI+X(8M '-XXX [ + 0J "< cTM-#- + ) 1 (5.11) 

for ~p/> d /h  and 0 < 2, ~< 1. 
We now apply (5.11) to deduce an inequality on the critical exponents 

for J,J, Jc at H = 0. Note first that the inequality y'/> 1 (see Section 3) 
implies that 

X/> const > (J - j ~ ) -o - , )  f o r J  - J~ small (5.12) 

for any ~ > 0; hence the second term on the right side of (5.11) dominates 
over the first (up to a possible power ~): 

OJ < const • M ~+x aM ~-x - - -  - ~ -  Xx[1 4" ~g](S - :~ ) -  (5.13) 

for J - J~ small. Multiplying both sides by X -~' and integrating from J = J '  
down to J -- J~ + E', we get 

- x  X J" )t - h  
X(J~ + , ' ) '  - X ( J ' ) ' - x ~  < const fj~+ ,M'+X(~-~_ [ 1 + ~:] 

X (S-J~)- 'dJ (5.14) 

(with logx replacing X l-x if k =  1). Since X(J ' )< o0 while X(J~ + ~') 
~(e ' )  -r '  as e'$0, it follows that the right side of (5.14) diverges at least as 
rapidly as (c') -(1-x)r' (or as Ilog~'[ if k = 1) as e'$0. Hence, in terms of 
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critical exponents, 

max[dp~,0] + e +  1 - ) t -  2/3 > ( 1 -  X) , /+  1 (5.15) 

for e0 > d/)t and all �9 > 0. Since "( > 1, the optimal value of )t is the 
minimal permitted one, ~ = d/~.  Hence 

, d max[du0,O ] > ~,'+ 2 f l -  ~ ( 7 ' -  1) for q, > d (5.16) 

Since the right side of (5.16) surely exceeds zero, we conclude that 

d dr;  > 7 + 2t3 - ~ (~,' - 1) for q, > d (5.17) 

Finally, Rushbrooke's (1) inequality 7' + 2fl > 2 - a '  implies that 

dr', > 2 - a ' -  d ( 7 ' -  1) for q > d (5.18) 

a weak form of the Josephson (5) inequality. 
The "correction term" - (d /dp ) (3 / -  1) in (5.17) and (5.18) is discon- 

certing; I would like to eliminate it, but I do not know how. Of course, if 
~,' < oo, we can take +---~ oo and conclude that 

dv'~ > 7' + 2/3 > 2 - a '  (5.19) 
where 

v"  = lim v,' -- sup v,' (5.20) 

Moreover, if reflection positivity holds, (2.11) implies that v' > v~; hence 

dr' > 7' + 2/3 > 2 - a '  (5.21) 

The inequality dr' > ~,' + 2/3 has been proposed previously by Choy and 
Ree, (s8) who gave a nonrigorous argument for it. 

The equality dr' = 7' + 2/3 is a hyperscaling relation. One useful inter- 
pretation is the following: Imagine trying to construct a scaling limit as 
JSJc .(s~ Lengths must be shrunk by a factor ~ ( J  J -~'" - c) , and the spin 
must be rescaled by a factor M - 1  ( j _  j r  to preserve the normaliza- 
tion of the one-point correlation function. But this means that the spatial 
integral of the two-point (connected) correlation function (i.e., the suscepti- 
bility) is rescaled by a factor M-2~-d-~(J- Jc) dv'-2B. Hence the con- 
nected two-point function has a finite, nonzero limit only if dr'  - 2/3 - 7' 
= 0. If dp' - 2/3 - ~,' > 0, then the connected two-point function vanishes 
in the scaling limit. [A similar interpretation can be given for inequalities 
(4.8)-(4.11).] 

The arguments of the present section can also be applied on the 
critical isotherm J = Jc to deduce the critical-exponent inequality 

1 d ~ ' - I  
d/z, > 1 + 8 ~ ~ for ~ > d (5.22) 
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However, this is weaker than the inequality (4.9) already proven by a 
different method. 

6. SOME MISCELLANEOUS INEQUALITIES FOR GAP EXPONENTS 

In this section, we shall prove some miscellaneous inequalities for the 
gap exponents A2m (m /> 2). The first follows from a rather strange inequal- 
ity due to GHS, (4a) valid for the spin- l /2  Ising model with ferromagnetic 
pair interactions and zero magnetic fieldlS: 

(~ i~ j~k~ , )  - (~0i~)(%~0~) - ( ~ i ~ 0 k ) ( ~ )  - ( ~ , ~ 0 t ) ( ~ k )  (6.1) 

< --2(~iCPj)(~gi~gk)(l~if~l) 

For J < Jc (so that M =  0), the left side of (6.1) is just (q~i;q~j;epk;qgt). 
Hence, summing over j ,  k, l and using (2.12), we conclude that 

~4 < - 2X 3 (6.2) 

(This improves the Lebowitz inequality u4 < 0.) Hence, in terms of the 
critical exponents (2.13), 

A4/> 7 (6.3) 

Actually, (6.3) is rather poor: for example, in mean-field theory m 4 = 3/2  
while , / =  1. 

A somewhat more interesting family of inequalities for gap exponents 
can be deduced from a set of correlation inequalities due to Newman, (41) 
derived from the Lee-Yang theorem. Consider a model with ferromagnetic 
pair interactions and zero magnetic field (and zero 'boundary condition); 
and assume that each single-spin measure ~i is even and satisfies the 
Lee-Yang condition: 

If Imz g= 0, then f exp(zq0)d~(q)) ~ 0 (6.4) 

Then Newman shows that any random variable X = ~iXiq) i with all ~ />  0 
has a representation of the following form: 

(exp(zX)) = exp(bz 2) I-I (1 + z 2 / a f )  (6.5) 
J 

for some b >/0 and 0 < a 1 < a 2 < �9 �9 �9 with ~ ja j  -2 < oo; here the set {aj) 
may be empty, finite, or infinite. It follows from (6.5) that the 2m-fold 
cumulant 

U2m(X)= ( f f ;  . . .~.X)---- ~@zmlog(exp(zX))iz=O (6.6) 

2m times 

]SNote that this inequality is not multilinear in the spins ~Pi. Hence it does not extend to models 
other than spin - 1/2. 
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is given by 

U2m(g) ~-. 2b6m, + ( -  1)m--  1 (2m)! m ~'aO~j-2m 
J 

(6.7) 

for m/> 1. Defining for simplicity 

V2ra(X ) = ( _ l ) m - 1  m (2/'?/)! U2m(X) (6 .8)  

Hrlder 's  inequality applied to (6.7) immediately gives 
1 

V2m(X) < ]-I v2,,k(X)~ (6.9) 
k = l  

w h e r e m = f l l m l + . . .  + flzmz, flk >l O for all k, and /31+ - . . +/3t />1.  
To apply (6.9), consider a model in finite volume V with periodic 

boundary conditions (so as to ensure translation invariance), and let 
X v = ~iq~i. Then as V---)oo, U2m(Xv) / V approaches what we have called 
U2m [see (2.12)]. Hence we get a nontrivial inequality from (6.9) as V ~  oo 
only if fll + " " " + fit = 1. All such inequalities are deducible from the 
subset 

]U2ml < const(m) [ ~2m_2~2m+2] 1/2 (6.10) 

with m/> 2. Inserting the critical-exponent definition (2.13), we conclude 
that 

A2m < A2m+2 for m /> 2 (6.11) 

i.e., A 4 < m 6 < m 8 < �9 �9 �9 . ( O f  course, if the scaling relations hold, then the 
gap exponents m2m a r e  all equal.) 

The inequality (6.11) was first proven by Baker C59) for the spin- l /2  
Ising ferromagnet, by essentially the same method as above. However, the 
proof based on Newman's inequalities has the advantage that it generalizes 
immediately to any model satisfying the Lee-Yang condition (6.4), for 
example, the ~0 4 lattice field theory. (37) It would be interesting to try to 
extend this method to positive magnetic field (or positive boundary condi- 
tions), so as to treat J > Jc and J = Jc; but I have not succeeded in doing 
so. 16 

While on the subject of gap-exponent inequalities, it is worth remark- 
ing that Lieb and the present author have proven (57) the inequality 

du~, >1 2A 4 -- y for ~/> d / 2  (6.12) 

16Note that with the usual definitions (2~ A] = 2 -  d - / 3  and A~ = fl + r ' ,  the inequality 
Ai < A~ is just Rushbrooke's inequality O) a'  + 2fl + "/'/> 2. If the inequality A~ < A~ could 
be proven, then the inequality dp~ >/ 7' + 2fl (for ~ > d), which improves (5.17), would 
follow immediately from A~ < d ~  - / 3 ,  which is (4.11). 
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as a by-product of our study of rigorous numerical upper bounds for the 
"dimensionless renormalized 4-point coupling constant" g(4) = _ Vq/X2 ~ .  
This strengthens earlier results of Schrader (22) and Glimm and Jaffe. (56) 
Also, Glimm and Jaffe (56) have shown that 

dg >/ A 4 "b A 6 - -  "it (6.13) 

(at least in a Euclidean-invariant field theory). It would be desirable to 
extend (6.13) to lattice models, using a suitable p~ in place of ~. It would 
also be desirable to prove the stronger inequality dp ) 2 A  6 - T  (or dp~, 
>/2~ 6 - -~ for suitable ~); I suspect that this can be done by using the 
strong form of the Gaussian inequality (45'46) together with the inequality 
#6 >~ 0, (46) but I have not worked out the details. 

APPENDIX: PROOF OF A GENERAL FLUCTUATION-DISSIPATION 
RELATION 

The purpose of this Appendix is to give a rigorous proof of the 
"fluctuation-dissipation relations" (or "sum rules") which are used in the 
present paper. The ideas in this Appendix are due largely to Jean Bricmont, 
who has kindly given me permission to include them here. For previous 
work of a similar nature, see Refs. 4, 27, and 60-62. 

Let us fix once and for all the boundary condition b; having chosen it, 
we shall drop it from the notation. Let us also fix an increasing sequence 
{ A, },~>1 of finite subsets of E with union equal to ~; and fix the single-spin 
measures { ~'i}. Now let {~(~)}0<x<l be a family of interactions, with 

�9 = + (A . I )  

for each X. Then, for each A, let fA be a function of the spins { qo i }i~ ~, and 
assume that fA and O' are sufficiently well behaved that the fluctuation- 
dissipation relation holds in finite volume, i.e., 

. . . .  a), ,,oa~ (A.2) E d• X f ) A v ~ O  

with the right side continuous in )t. [This is just an extremely mild 
integrability condition. (A.2) follows essentially trivially from (2. I).] 

Assume further that 
/ e  \)'~> (A.3) F(h) = lira \JA./A. 

n ---> ~ 

and 
F x (X) = l i m  (fA. ; q)~>A~ ) (A.4) 

exist for all X and 0 < X < 1. [Often there will be a function f ~  such that 

= (A.5)  
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and 

�9 m ,  "&(x) ( A . 6 )  F x (X) = ( f~ ,  =x/~ 
In fact, we shall usually take fa  = f for all A, where f is the quantity to be 
differentiated. Then (A.5) and (A.6) hold with f ~  = f, simply by definition 
of ( .  �9 �9 )~'d~ (at least if f is reasonable).] 

We then have the following general fluctuation-dissipation theorem: 

Proposition A.1. Assume that 

l imF x (?t) = F x (0) (A.7) 
X$0 " " 

for each X; and assume further that 

sup sup [(fA.; qS~)~[~)[ < oo (A.8) 
X O~)~<~?ton>~no 

for some n o and some )t o > 0. Then 

F0t)  x=o+ = - ~ Fx(O) (A.9) 
x 

Proof. By definition, 

_dddx r()t)  x=0+ = lim)tx,0 -~[ r()t)  - r ( 0 ) ]  

= lim lim ) t - l r / r  \o  <~ �9 ~~ 
~k$O n--~oo [ X J A , / A .  - -  ( f A . ) A .  J 

Then by (A.2), 

d F()t) x=o+___ li m lim ) t - i  (xd~,__dd ~'> 
d--X ~0  . - ~  Jo - -  a) t '  ( f~~176 

= - l i m  lim )t-lfoXd)t' E (fA ; qS~)A~()" 
X.l,0 n ---) oo X N A n = ~  O " 

Now, by (A.8) and the dominated convergence theorem, we can (for 
)t ~< ?to) take n ~ oo inside the integral over )t' and the sum over X: 

d-~ l =-lim)t- ' foXd)t '~]Fx()t  ') F()t) x=o+ x,co x 

Moreover, (A.8) also implies that 

sup IFx()t ' ) l  < 
X 0 ~<)t' ~< 7to 

Hence, for )t < )t o, we can interchange the integral over )t' with the sum 
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over X; moreover, we can then take X.l,0 inside the summation: 

d F()t) x=0+ = - ~ limX-r~Xd)t 'Fx (X') 
dX x x~0 J0 

But then (A.9) follows immediately from (A.7). [] 

We are thus reduced to verifying, in any given case, the hypotheses 
(A.7) and (A.8). Hypothesis (A.7) says essentially that the measures 

qS(x) �9 ( . . . ) o 0  converge (on statable observables) to ( . . . ) ~ o ~  as X$0 [if (A.6) 
holds, it says exactly this]�9 Now this is exceedingly natural, but it is not 
trivial: For example, let �9 (x/ be the interaction for the Ising model 
somewhere below the critical temperature, in magnetic field X, and use 
minus boundary conditions (i.e., b i = - 1 for all i). Then limx,0( �9 �9 �9 )~x~ is 
the zero-field state with positive magnetization; it does not equal ( �9 �9 �9 )e2~ 

lim~_~( �9 �9 \~0~ �9 /A,,b, since this is the zero-field state with negative magne- 
tization. 

We therefore have to verify (A.7) on a case-by-case basisJ 7 In any 
event, (A.7) is not an unreasonable requirement: if expectation values are 
not even continuous as 7t$0, how can we expect them to be differentiable? 

It remains, therefore, to find methods for demonstrating the uniform 
summability (A.8). In general, we expect (A.8) to hold (for reasonable 
perturbations O') whenever q5 (~ is not a critical point. We illustrate this in 
a number of cases; our method is to use correlation inequalities to reduce 
(A.8) to a quantity involving only the two-point (connected) correlation 
function. 

For purposes of illustration, we assume that fA is a finite product of 
spins q0 A, and that qS' is generated [according to (2.2)] by a single term 

_ jBq~ B and its translates, i.e., 

d~x = { -JBep~+i if X=supp(B + i) otherwise (A.10) 

where B + i is the translate of B by i E ~. Then (A.8) becomes the claim 
that 

~] sup sup l(q0a; q0 B+i\qb(X)Iz)A. l <  ~ (A.11) 
i E g  O~z)t <~;ko n> no 

Under a variety of conditions, we can bound (q0~;cp ~+~) by two-point 
functions: 

(1) GHS inequality (IAI = l, IB[ = 2 or IAI = 2, tBi = 1): 

0 < ( ~ ;  %rpt) -<< (q~k)(q~j; q0,)+ (q~z)(~j; q~). (A.12) 

17For example, it is easy to show (25) that if the interactions qb ix) decrease to ~(0) in a suitable 
(FKG) sense (as in the example above), and if plus boundary conditions are used, then the 
convergence does hold, 
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Of course, we use also the GKS II inequality for the lower bound in (A.12). 
(2) Lebowitz inequality ([A[= In l = 2): 

0 < (q)j~iPk;~tgl~m) < ({~?j;~Pl)(l~?k;qgm)"~- ({~)j;~Pm)(l~k;~Pl) 

"~ ( ~)j ) ( ~3 , ) ( ~tg k ; {~g m ) "~ < fp k ) ( fpm ) ( ~)j ; Ct9 l ) 

+ (~)(q0,,)(r&; %) + (r r ) (A. 13) 

This method was previously used by the author. O2) 
(3) Lebowitz-Gaussian inequality (H = 0, b = 0 only): 
If 1.4] and [B I are both odd, then (r (q0A~B+i) can be 

expanded by the Gaussian O5-47) or Lebowitz inequality into a sum of 
products of two-point functions; since IA[ and IB[ are odd, at least one of 
these two-point functions in each term pairs an element of A with one of 
B + i, thus exhibiting the decay as Iil-+ ~ .  

If 1.41 and IBI are both even, the aforesaid inequalities imply (47'63'64) 
that 

(qoA;rp B+i) < ~ (r (A.14) 
AIUA2=A 
BIUB2=B 
I A ~l,IBll odd 

Expanding further into two-point functions, we reach the same conclusion 
as above. 

Finally, if IAI and IB[ have opposite parity, then (qoa; qo B+~) = 0. 
It goes without saying that (r q0B+i) > 0 by GKS II. 
(4) FKG inequality: If the spins are bounded in absolute value by K, 

then it can be shown (29'61'6s) using the FKG inequality that 

[(r < KIAI+IB[-2 Z (q)j;~k+i) (A.15) 
j E s u p p A  
k E supp B 

In the case of unbounded spins, we use an argument due to Bricmont et 
a/. (65) : Let K > 0 and define the cutoff spins 

~(n)= (sgn%)min(K, I~jl) (A.16) 

Then by the FKG inequality we find that 

Ko(K)A'G(K)B+i>I' < K]AI+IBI-2 E ( 0 )  !K);O'(K)\k+i/ 

j~suppA 
k E supp B 

< KIAI+IBI-2 ~, <r (A.17) 
j E s u p p A  
k E supp B 

Now by the superstability estimate (23'661 

Prob(I @ > K) < c e x p ( - a K  2) (A.18) 
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for suitable c, a > 0. Hence 

[<qoA;rps+i) - <aCK)A; 0r162 ~< c ' K B e x p ( - a K  2) (A.19) 

for suitable c',/3 (depending on IAI and I B [). We can now combine (A.17) 
and (A.19), and optimize over K; choosing 

we find that 

with 

) 1/2 

K =  - - l l o g  ~ (q~j;qOk+i) 
Ot j E supp A 

k E supp B 

(A.20) 

I<q~176 < const F ( j  ~su~ppA <~;  q0k+i) ) 

k E supp B 

(A.21) 

F(x)  = x[logxl ~ (A.22) 

for suitable power "~ (depending on IAI and IBI). Obviously the same 
method can also be applied to unbounded spins satisfying estimates weaker 
than (A.18); the resulting function F will be weaker than (A.22). 

It is worth remarking that this use of FKG inequalities, though 
sufficient for our purposes, is not useful for obtaining quantitative estimates 
near the critical point: the constant in (A.21) blows up as aS0. 

(5) Reflection positivity (IAI = 1 or Inl = 1): For Iil sufficiently large, 
there exists a hyperplane parallel to one of the coordinate axes which 
separates the set suppA from the point i. By translation, reflection, and 
coordinate-interchange invariance, we can assume that i~ >/0, i 2 . . . . .  i d 
= 0 and suppA c ( J : j l  < 0). Then by reflection positivity and the 
Schwarz inequality, 

I(q~A; r = I((q oA -- (q~A >)(q~;_ (q0i)))l 

< <~A; ~OA>l/2<~i; ~Oi>l/2 

= CA(%; r 1/2 (A.23) 

where 0 is reflection in the hyperplane (j~ = 0} and c A depends on A (and 
the state) but not on i. If the two-point function decays suitably rapidly, 
(A.23) is summable over i. This argument is due to Bricmont et aL (65) 

It is worth remarking that while the above arguments are applicable to 
very general perturbations q0 ~, the apparent generality is deceptive: since 
(A.8) requires that the bound hold for all h in the interval [0,2%], it is 
necessary that the requisite correlation inequalities hold not only for ~(0) 
but also for the perturbed interaction ~(x). In practice, this usually restricts 
the perturbation to be either linear (IBI = 1), quadratic (}BI = 2), or affect- 
ing only a single site (Isupp B [ =  1). Likewise, the unperturbed interaction 
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cb (~ must usually be a ferromagnetic pair interaction with a possible 
magnetic field. 

In order to verify (A.11), we now need to obtain bounds on the 
two-point function (and perhaps also on the magnetization) which are 
uniform in the volume A. This also can often be done by correlation 
inequalities: 

(1) For zero boundary conditions (b = 0), each (~A)A increases with 
A, by GKS 1I. (26) Hence (~'4)A is bounded above by ( ~ ) ~ .  This is 
useful for J < Jc- 

(2) For + boundary conditions, (%.; ~k)A increases with A, by GHS. 
Hence (~j; %)A is bounded above by (~j; ~0k) ~ . This is useful for all J (at 
least for bounded spins). 

We are now prepared to deduce the specific fluctuation-dissipation 
relations which are needed in the present paper. To differentiate the 
magnetization, set fA = ~0 for all A; then F(~) = M(~). It follows from the 
foregoing that the derivative (resp. one-sided derivative) 3M/3H is given 
by 

3M H=Ho 
X = ~ = ~,, (~00; ~0;} (A.24) 

i 

provided that the sum on the right is bounded for H in a neighborhood 
(resp. one-sided neighborhood) of H 0 (uniformly in the volume A). More- 
over, as noted above, the uniformity in the volume A follows immediately 
from the corresponding bound on the infinite-volume two-point function, if 
we assume + b.c. (for H /> 0), bounded spins, and the GHS inequality. 
Equation (3.2) for 3M/3J can be derived by similar means; the sum has to 
be bounded for J in a neighborhood of J0. 

To differentiate the internal energy, setfA = (1/2)~,keeJokePO~k for all 
A; then F(~)---- U(~). The formulas for 3 U/OH [Eq. (3.6)] and 3 U/3J 
[sentence following (2.8)] can be derived under suitable hypotheses similar 
to the above. 

To differentiate X [sentence following (4.1); also Eq. (5.1)] is a some- 
what more subtle matter. If we were to take 

fA = ~ (~o - (r (~i}oo) (A.25) 
i c e  

for all A, then for finite volume A the sum over i in (fA}A or ()cA; qb~}A 
might diverge owing to the contributions i ~ A. ~8 Instead, it is more natural 
to take 

f~]) = ~] ( % -  (f])0)~)(~gi- (f~i)oo) (A.26) 
i ~ A  

1SUnless we happened to take exactly the boundary condition b~ = (ep~}~ ~ M. Of course, for 
J < J~ and H = 0 we can do just that: take b i = M =  0 (zero b.c.). But if M r  it is 
inconvenient to take b~ = M: we would have to renounce those arguments based on 
correlation inequalities (see above) which are valid only for zero or + b.c. 
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or  
fn (2) = ~ (% - (q%)A)(% - (qgg)a) (A.27) 

iEA 
Indeed, 

(f~2))a = ~ ( % ;  ~~ = ~-~ (r (A.28) 
i~A 

and the fluctuation-dissipation relation (A.24) assures us (under suitable 
hypotheses) that this approaches X as AI"s Hence, if we take fA = f~2), we 
have F(~) = X(~). Moreover, 

( f (2 ) ;  ~ x ) A  = ~ (q~ cPi; (I)x)a (A.29)  
iEA 

In order to satisfy (A.8), we need a bound on (A.29) that is uniform in A 
and k and summable over X. To derive such a bound, we use the F K G  
inequalities as above. Assume first that the spins are bounded in absolute 
value by K. Then 

- 

< 2 K  IAl+lBl+tcl-2' ~ (~k; q~ + ~ (~k+,; q~z+j)[ (A.30) 
k E supp A k E supp B 
1 E supp C 1 E supp C 

But analogous inequalities hold also for the other two permutations of 
A, B, C; hence the left side of (A.30) is bounded by the minimum of these 
three permutations. Moreover, this minimum is summable over i and j (if 
the two-point function decays fast enough so that ~d < o0): the essential 
reason is that if one of the distances Ill, Ijl, and li - J l  is large, then in fact 
at least two of them are large; this means that at least one of the three 
permutations of the right side of (A.30) will be small. Let us show this in 
detail for the simple case where IAI = IB I = [CI = 1. We have 

I< oo; qo,; qoj>l 

< 2K E min[ G(i) + G(j), G(i) + G(i - j), G(j) + G(i - j ) ]  
z,j 

< 12K E [G ( i )  + G ( j ) ]  
lil >/IJl > l i - j l  

< 12K[~/. ~ J Ei G(j)] 
IJl < Iil Ill < 2ljl 

(e l  + r )X (A.31) 

where we have written G(i)= (q%; qoi). This handles 0 x / 0 H ;  similar but 
slightly messier arguments handle DX/DJ. Unbounded spins can be be 
handled by the superstability argument noted above. 
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Finally, it is worth noting an argument due to Bricmont (67) which 
shows that (A.24) holds even at the critical point (in the sense, of course, 
that both sides are + or To see this, note first that we always have 

0M ~/= ~0+ ~> ~ (990; (~9i)1t0 (A.32) 
OH i 

for H 0 > 0 (and, say, + b.c.); this is an easy argument using GKS 11. (27) 
But the right side of (A.32) dominates the same sum for H > H 0, by GHS. 
Hence, if the right side of (A.32) is finite, we have precisely the uniform 
bound required to deduce (A.24) via Proposition A. 1. On the other hand, if 
the right side of (A.32) equals + oo, then so does the left side! 
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